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Abstract

It is well known that empirical financial time se-
ries data exhibit long memory phenomena: the be-
haviour of the market at various times in the past
continues to exert an influence in the present. One
explanation for these phenomena is that they result
from a process of social learning in which poorly
performing agents switch their strategy to that of
other agents who appear to be more successful. We
test this explanation using an agent based model
and we find that the stability of the model is di-
rectly related to the dynamics of the learning pro-
cess; models in which learning converges to a sta-
tionary steady state fail to produce realistic time
series data. In contrast, models in which learning
leads to dynamic switching behaviour in the steady
state are able to reproduce the long memory phe-
nomena. We demonstrate that a model which in-
corporates contrarian trading strategies results in
more dynamic behaviour in steady state, and hence
is able to produce more realistic results.

1 Introduction

With the explosion of algorithmic trading, financial markets
now constitute some of the largest and most mission criti-
cal multi-agent systems in our society. Understanding the
behaviour of these markets would, it would seem, make an
important contribution to the prevention of future financial
crises. There is a need to build models of actual electronic
markets, and to validate these models against empirical facts
— that is, to attempt to reverse engineer existing multi-agent
systems in order to understand how they work.

Such an exercise is now possible with the availability
of electronic data detailing every transaction in the market
which can run to gigabytes per year per financial asset, and
can be purchased from the major financial exchanges by any
third party.

Towards this end we introduce an agent based model which
produces behaviour consistent with several phenomena that
have been widely documented from studies of empirical fi-
nancial data. Our model is in the tradition of adaptive ex-
pectations [Evans and Honkapohja, 2001] models in which:
(i) agents’ valuations are determined by their expectations of

what will happen in the market in the future, for example
their belief that the market price will rise or fall; and (ii) ex-
pectations are formed inductively through a learning process,
rather than through the framework of rational expectations.
This type of model is in contrast to auction theoretic models
which typically assume that valuations are private informa-
tion, are well defined, uncorrelated, or do not change over
time, or some combination of these. In contrast the adaptive
expectations framework pictures a much more dynamic view
of agents’ beliefs as they constantly revise their expectations,
and hence valuations, in response to observations of other
agents and the market itself: the market is an “expectations
feedback system” from which valuations emerge [Heemeijer
et al., 2004].

The focus of our analysis is to determine to what extent
this picture of the market is consistent with the empirical data
from real exchanges. Initially we examine properties which
are observable in empirical high frequency trading data with
a view to model validation. Only once our model is validated
can we use it answer counter factual questions such as how
changes in the design of the market mechanism would af-
fect the efficiency of the market. Therefore we focus on well
known “stylized facts” of high-frequency time series data ob-
served in real financial markets and we analyse to what extent
different model assumptions are consistent with these phe-
nomena. Table 1 summarizes these phenomena.

In Section 2 we describe an existing social learning model
[LeBaron and Yamamoto, 2008] and introduce our extension
of it. We describe our approach to the validation of the social
learning model in Section 3 and present our results in Sec-
tion 4. In Section 6 we analyse the ability of the two mod-
els to generate stable long memory phenomena under free-
parameter variation and over extended periods of time. Fi-
nally in Section 7 we conclude.

2 The Model

We attempt to explain the long memory phenomena in Ta-
ble 1 using an adaptive expectations model with three classes
of strategy which are used to form expectations about future
returns:

1. fundamentalists value a stock through an understand-
ing of its hypothetical underlying value, in other words,
based on expectations of the long term profitability of



Table 1: Long Memory Phenomena

Long Mem-
ory

Phenomena Description

Volume Trading volume is persistent over time
[Lobato and Velasco, 2000]. Over periods
of time volume can be consistently high

or low.

Volatility Stock price fluctuations have positive re-
lations [Ding er al., 1993; Engle, 1982;
Mantegna and Stanley, 1997; 2002; Pa-
gan, 1996]. Periods of similar volatility

are observed ("volatility clusters”).

Market Or-
der Signs

Time series of the signs (that is, buy or-
ders have a positive sign and sell orders
have a negative sign) of market orders fol-
lows a long memory process [Lillo et al.,
2005].

Returns do not exhibit long memory
[Cont, 2001]. Similar returns do not clus-
ter together.

Returns

the issuing company;

2. chartists form valuations inductively from historical
price data; and

3. noise traders who trade based on the fluctuations of
the price of a stock. The buying and selling behaviour
of traders for a particular stock generates characteristic
fluctuations in price. A stock has an emergent volatil-
ity, understanding this volatility allows traders to iden-
tify when the price is relatively low and when it is rela-
tively high.

Although chartist strategies should not be profitable ac-
cording to the efficient markets hypothesis, this is not nec-
essarily true if the market is outside of an efficient equilib-
rium. For example, if many agents adopt a chartist forecast-
ing strategy it may be rational to follow suit as the chartist ex-
pectations may lead to a self-fulfilling prophecy in the form
of a speculative bubble. Thus there are feedback effects from
these three classes of forecasting strategy and it is important
to study the interaction between them in order to understand
the macroscopic behaviour of the market as a whole.

We model the market mechanism as a continuous double
auction with limit orders. Each agent submits a limit order to
the market on every round of trading. Orders are executing
using a time priority rule: the transaction price is the price of
the order which was submitted first regardless of whether it is
a bid or ask. If an order cannot be executed immediately it is
queued on the order-book.

The sign (buy or sell) and the price of the order for agent ¢
at time ¢ is determined as a function of each agent’s forecast
of expected return 7 ; ; ¢ ) for the period ¢ + 7. The price of
the order is set according to:
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where p; is the market quoted price at time ¢, and the sign of
the order is buy iff. p(; ¢ 4,) > py or sell iff. pg; 447y < pr.

We adopt the framework of [LeBaron and Yamamoto,
2008] in which the forecasted expected return for the period
t + 7 of agent ¢ at time ¢ is calculated with a linear combi-
nation of fundamentalist, chartist and noise-trader forecasting
rules:
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where F' is the so-called “fundamental price” (which is ex-
ogenous and fixed for all agents), p; is the current market
quoted price which is the value of the transaction at the pre-
vious time step or in the absence of a transaction the mid-
point of the spread, ¢(; ;) are random iid. variables distributed
~ N(0,1) and rr, is a forecast based on historical data; in
our case a moving average of actual market returns over the
period L;:

L
= Di—j —Pt—j—1
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The linear coefficients f(; ), c( ) and n; ;) denote the

weight that agent ¢ gives to each class of forecast amongst

fundamentalist, chartist and noise-trader respectively at time

t.

2.1 Learning

As in [LeBaron and Yamamoto, 2008], agents use a co-
evolutionary Genetic Algorithm to learn the coefficients
Ji,t)s ey and ng; ). Each agent records its own forecast
error as the market progresses and generates a fitness score s;
over a period of 5000 units of time. Each unit of time corre-
sponds to the entry of an order into the market by an agent.
Each agent presents 5 orders to the market in this period (the
number of agents in these models being 1000).

1
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After 5000 units of time each combination of weights held
by the agents is assigned a relative fitness score (.5;) nor-
malised with respect to the population fitness.

S;
> Si

The strategy weights are copied by the learning agents in pro-
portion to this score.

The initial values at time t = 0 for the fundamentalist
J(i,0)» chartist c(; o) and noise n; gy weights are drawn from
the following distributions:

Si =

(6)
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In addition to the learning of weights after each 5000 units
of time, agents also may mutate one of their weights drawing
a weight at random from the distributions in 7.

We analyse two variants of this basic model:

1. an existing model in the literature [LeBaron and Ya-
mamoto, 2008] in which forecasting strategies are linear
combinations as per Equation 1 (henceforth we refer to
this model as the LY model); and

2. our own model in which each agent adopts either an
atomic fundamentalist (Equation 2) , chartist (Equation
3) or noise trader (Equation 4) forecasting rule and not
a linear combination as in the LY model above (Equa-
tion 1). Both this model and the LY model occupy the
same strategy space, in this model however, two out of
the three weights are zero reducing each agent to just
one of the return forecast rules (Equation 2, Equation 3
or Equation 4). We extend this strategy space by adding
a boolean parameter which indicates if the agent strategy
is contrarian or not. We use two contrarian strategies one
is to negate the learnt trend, so the agent predicts a price
move in the opposite direction and the second to zero the
trend predicting that the price will not trend in the learnt
direction but will remain at its current level. We imple-
ment this firstly by setting the contrarian chartist strategy
to the negative of the non-contrarian chartist strategy:

Tee(istt+1) = ~Te(ist,t+7)

Secondly we set the contrarian fundamentalist and noise
strategies to be the zeroed non-contrarian fundamentalist
and noise strategies:

Pro(ittdr) = Tno(isti4r) =0

In the contrarian variant agents can choose from the fol-
lowing discrete set of return forecasting strategies:

{Pelisttr)s T (it ttr)s Tr(itt41)s
ffc (2,t,t47)> 72nc (i,t,t47)> fcc(i,t,t+7') }

The same learning process operates in this model as in
the LY model (but with the addition of the contrarian pa-
rameter). So an agent can change from fundamentalist to
chartist or contrarian to non-contrarian to take advantage
of a better strategy.

During initialisation of the model values are drawn ran-
domly from the distributions in 7 as in the LY model,
but each agent also chooses randomly between being a
fundamentalist, chartist or noise trader and contrarian or
non-contrarian.

Henceforth we refer to this latter model as “the Contrar-
ian Model”.

3 Methodology and Model validation

We compare model assumptions according to how well a par-
ticular model reproduces the long-memory phenomena in Ta-
ble 1. To compare models we test their long-memory prop-
erties using Lo’s modified rescaled range (R/S) statistic [Lo,
1991] (sometimes called range over standard deviation). The
statistic is designed to compare the maximum and minimum
values of running sums of deviations from the sample mean,
re-normalized by the sample standard deviation. The devia-
tions are greater in the presence of long-memory than in the
absence of long-memory. The Lo R/S statistic includes the
weighted auto-covariance up to lag q to capture the effects of
short-range dependence.

Our first experiment tests the conjecture that social learning
(in the LY Model) is sufficient to produce the long memory
phenomena in Table 1 by attempting to reject the null hypoth-
esis that long memory is caused by the strategies that each
agent adopts and not learning at all. The model is simulated
in two sequential phases with different treatment factors:

1. alearning phase in which the agent’s genetic algorithm
searches for strategies with high relative fitness (see
Equation 5 and Equation 6).

2. a commitment phase where agent’s commit to a learned
strategy and perform no further learning.

The default experiment time is 250000 time units (taken from
[LeBaron and Yamamoto, 2008]). The experiment has been
executed for twice the default experiment time (2 x 250000
units of time); the learning phase is executed for half the ex-
periment time (the default time) and then the commitment
phase is started and runs for the same period (default param-
eter values are displayed in Table 2).

4 Validation Results for LY Model

In Figure 1 we show the mean value (across all agents) of the
fundamentalist (f), chartist (c) and the noise trader weight
(n) with respect to time. It also shows the chartist weight
distribution standard deviation (o) (the noise and fundamen-
talist weight distribution standard deviation are not shown but
behave in a similar manner). As we can see in Figure 1 the
agents move initially very quickly to a region in the strat-
egy space. There is then a period of mean fluctuation as the
agents move about in that region (not converging to any spe-
cific strategy). When the commitment phase starts and the
agents stick with the strategy they have found, movement in
the weights cease and we end up with a straight line for the
mean value of the weights over the remainder of the experi-
ment time with no change in the weight distribution standard
deviations.

Results are shown in tables which present the percentage
of executions exhibiting long memory in volume, volatility,
signs of market orders (buy or sell orders) and returns for
each experiment.

The experiment was executed 100 times; the results are
summarised in Tables 3 and 4. In the first phase (the learning
phase presented in Table 3) we see the long memory char-
acteristics we are expecting with this model. In the second
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Figure 1: LY Model. Fundamentalist (f), Chartist (c), Noise
(n) mean weights and Chartist Standard Deviation (o.) with
time.

Table 2: Default Values for All Models
’ Parameter ‘ Value

Std dev of fundamental weight (o) | 1.5

Std dev of chartist weight (o.) 1.5
Std dev of noise weight (o) 1.5
Mutation Constant 0.08

Table 3: LY Model Learning Phase

Lag Volume Volatility | Market Returns
Order
Signs

q=4 100 100 87 4

q=6 100 100 89 4

q=8 100 100 89 4

q=10 100 100 89 4

phase (the commitment phase presented in Table 4) we fail to
generate any long memory properties.

As soon as we switch off learning these long memory phe-
nomena disappear. It is not sufficient to have just the cor-
rect mix of strategies in order to generate long memory. So
there is something about the dynamics of weight changing
(caused in this case by the learning process) which is causing
these phenomena. We do not have a mathematical explana-
tion for these long memory features and yet we are able to
observe that these properties emerge through the changes of

Table 4: LY Model Commitment

Lag Volume Volatility | Market Returns
Order
Signs
q= 0 0 0 0
q=6 0 0 0 0
q=8 0 0 0 0
q=10 0 0 0 0
Table 5: Ranges of Parameter Values
Parameter Value
Std dev of fundamental weight (o¢) | 0.0 to 3.0
Std dev of chartist weight (o) 0.0to 3.0
Std dev of noise weight (o) 0.0to 3.0
Mutation Constant 0.05 t0 0.20

agent strategy within the market.

5 Model Stability

In this section we review the stability of the LY Model. We
vary some of the free-parameters described earlier, the stan-
dard deviations of the Gaussian distributions from which the
weights are chosen (Equation 7) and the mutation degree. The
mutation degree is the probability that any individual will mu-
tate it’s strategy and draw a new weight from the distributions
in (Equation 7). We have extended the experiment execu-
tion time to highlight any problems in stability with respect
to time. The experiments were run for 10 times the default
time (10 x 250000 units of time) and parameter values were
randomly drawn (uniformly) from the ranges in Table 5. Fifty
sets of random parameter variations were executed with 10
executions for each set (totalling 500 for 2500000 units of
time).

6 Model Stability Results

In Table 6 we present the results of the first experiment. We
note we get negative results from the LY Model which pro-
duces weak Market Order Sign long memory but also long
memory in returns (not a stylised fact of financial markets).

In Tables 7 and 8 we have separated out the long mem-
ory properties of the execution of the LY Model into an early
part of the test and a later part. We note that the long mem-
ory properties of the model are changing with respect to time.
The LY Model is not behaving in a stable fashion. In Table 9
we display the results for the execution of the LY Model with
just the atomic extensions and finally in Table 10 we display
the results for the Contrarian model. Comparing Tables 9 and
10 with the LY Model execution in Table 6 we see a substan-
tial improvement in the stability of the Contrarian model over
the LY model.



Table 6: Parameter Variation Experimental Results for LY
Model

Lag Volume Volatility | Market Returns
Order
Signs

q=4 76 86 18 12

q=6 76 83 18 14

q=8 76 82 18 14

q=10 | 75 81 18 15

Table 7: Early Phase Execution Results for LY Model

Lag Volume Volatility | Market Returns
Order
Signs

q= 100 99 50 50

q=6 100 99 52 55

q=8 100 99 53 57

q=10 100 99 54 61

Table 8: Later Phase Execution Results for LY Model

Lag Volume Volatility | Market Returns
Order
Signs

q=4 69 79 27 25

q=6 70 77 28 28

q=8 70 76 29 29

q=10 | 70 75 29 31

Table 9: Experimental Results for Atomic Model

Lag Volume Volatility | Market Returns
Order
Signs

q=4 96 90 43 0

q=6 96 89 41 0

q=8 96 89 40 0

q=10 96 89 39 1

In Figure 2 the weight means of LY Model change rela-
tively smoothly, the Contrarian Model Figure 3 in contrast, is
very much more dynamic, the mean values for fundamentalist
and chartist are moving a great deal relative to the LY model.
Comparing the bars (which indicate the fundamentalist SD
(o) and chartist SD (o) with time) in Figure 2 and 3 we
see that the LY Model fundamentalist and chartist weight dis-
tributions tend to converge while with the Contrarian Model
the chartist weight distribution hardly converges at all and the
fundamentalist distribution is diverging.

Table 10: Experimental Results for Contrarian Model

Lag Volume Volatility | Market Returns
Order
Signs

q=4 94 93 58 0

q=6 94 92 58 0

q=8 93 91 58 0

q=10 92 91 58 0

We are seeing the convergence of the LY Model into a re-
gion in the strategy space. The GA in the LY model has been
successful in finding a region in this space (the successful
completion of its learning). The Contrarian Model is failing
to converge in the strategy space. The LY Model is not gen-
erating stable long memory properties, because the success-
ful genetic algorithm is converging to a region in the strategy
space. By restructuring the agent strategy space and increas-
ing contrarianism we are able to retain the dynamic necessary
to produce stable long memory results (Tables 9 and 10).

7 Conclusion

While imitation may contribute to the generation of long
memory phenomena in real financial markets other factors
must play a role in producing stable long memory phenom-
ena over time. Our model which incorporates contrarianism
and strong disparity between strategies is able to generate
a more dynamic behaviour in steady state, and is therefore
able to produce more realistic (stable) results. The LY model
[LeBaron and Yamamoto, 2008] is not stable with respect
to variation in free-parameter settings and model execution
time. This was caused by the convergence of the Genetic Al-
gorithm to a smaller and smaller strategy space and a loss,
therefore, of the dynamic that causes the long memory phe-
nomena. We modify the LY model adding atomic agents and
increased contrarianism (the Contrarian Model) which retains
the dynamic necessary to generate stable long memory phe-
nomena (Section 6).

We conjecture that any model that causes and maintains a
dynamic switching behaviour will produce stable long mem-
ory and that a non-learning heuristic model that mimics imita-
tion (herding) and contrarianism would also produce positive
long memory phenomena (the subject of future research).
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